首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic stabilities of double,tetra-, and hexarosette hydrogen-bonded assemblies
Authors:Prins Leonard J  Neuteboom Edda E  Paraschiv Vasile  Crego-Calama Mercedes  Timmerman Peter  Reinhoudt David N
Institution:Laboratory of Supramolecular Chemistry and Technology, MESA Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Abstract:A study of the kinetic stabilities of hydrogen-bonded double, tetra-, and hexarosette assemblies, comprising 36, 72, and 108 hydrogen bonds, respectively, is described. The kinetic stabilities are measured using both chiral amplification and racemization experiments. The chiral amplification studies show that solvent polarity and temperature strongly affect the kinetic stabilities of these hydrogen-bonded assemblies. For example, the activation energy for the dissociation of a tetramelamine from a tetrarosette assembly, a process that involves the breakage of 24 hydrogen bonds, was determined at 98.7 +/- 16.6 kJ mol(-1) in chloroform and 172.8 +/- 11.3 kJ mol(-1) in benzene. Moreover, racemization studies with enantiomerically enriched assemblies reveal a strong dependence of the kinetic stability on the number and strength of the hydrogen bonds involved in assembly formation. The half-lives for double, tetra-, and hexarosette assemblies were found to be 8.4 min, 5.5 h, and 150 h in chloroform at 50 degrees C, respectively. For higher generations of these types of assemblies, the kinetic stabilities become so high that they can no longer measured in a direct manner.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号