首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Salt effects on the conformational behavior of 5-carboxy- and 5-hydroxy-1,3-dioxane
Authors:Vázquez-Hernández Maribel  Rosquete-Pina Giselle A  Juaristi Eusebio
Institution:Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, D.F., México.
Abstract:The varied and essential involvement of metal ions and inorganic salts in biological and chemical processes motivated the present study where 5-carboxy- and 5-hydroxy-1,3-dioxanes are used as model frameworks for the evaluation of the conformational behavior of oxygen-containing receptors in the presence of Li(+), Na(+), K(+), Ag(+), Mg(2+), Ca(2+), Ba(2+), and Zn(2+). Thus, the position of equilibria, established by means of BF(3), between diastereomeric cis- and trans-5-substituted-2-phenyl-1,3-dioxanes, in solvent THF and in the presence of 0, 1, and 5 equiv of salt, has been determined. The observed Delta G(o) degrees values for the conformational equilibria of 5-carboxy-1,3-dioxane show that Ag(+), Li(+), and Ca(2+) complexation leads to increased stability of the axial isomer. In the case of the 5-hydroxy-1,3-dioxane, Mg(2+), Ag(+), and Zn(2+) are the metal ions that stabilize the axial conformer of the heterocycle upon association. Interpretation of the experimental observations was based on DFT molecular modeling studies at the Becke3LYP/6-31G* and Becke3LYP/6-31+G** levels of theory. Although gas-phase calculations give Delta E values that are too large when modeling equilibria involving ionic species in polar solution, the computational results confirm the structural and energetic consequences of metal cation coordination to the oxygen atom in carbonyls or ethers. The results derived from the present study contribute to our understanding of the chemical processes involved in molecular recognition and physiological events.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号