首页 | 本学科首页   官方微博 | 高级检索  
     


Beam profile measurements and simulations for ultrasonic transducers operating in air
Authors:Benny   Hayward   Chapman
Affiliation:Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom.
Abstract:This paper outlines a method that has been implemented to predict and measure the acoustic radiation generated by ultrasonic transducers operating into air in continuous wave mode. Commencing with both arbitrary surface displacement data and radiating aperture, the transmitted pressure beam profile is obtained and includes simulation of propagation channel attenuation and where necessary, the directional response of any ultrasonic receiver. The surface displacement data may be derived directly, from laser measurement of the vibrating surface, or indirectly, from finite element modeling of the transducer configuration. To validate the approach and to provide experimental measurement of transducer beam profiles, a vibration-free, draft-proof scanning system that has been installed within an environmentally controlled laboratory is described. A comparison of experimental and simulated results for piezoelectric composite, piezoelectric polymer, and electrostatic transducers is then presented to demonstrate some quite different airborne ultrasonic beam-profile characteristics. Good agreement between theory and experiment is obtained. The results are compared with those expected from a classical aperture diffraction approach and the reasons for any significant differences are explained.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号