首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A novel design scheme for acoustic cloaking of complex shape based on region partitioning and multi-origin coordinate transformation
Authors:Pengfei LI  Fan YANG  Peng WANG  Jinfeng ZHAO  Zheng ZHONG
Institution:1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China;2. School of Science, Harbin Institute of Technology, Shenzhen 518055, Guangdong Province, China
Abstract:Acoustic cloaking is an important application of acoustic metamaterials. This article proposes a novel design scheme for acoustic cloaking based on the region partitioning and multi-origin coordinate transformation. The cloaked region is partitioned into multiple narrow strips. For each strip, a local coordinate system is established with the local origin located at the strip center, and a coordinate transformation in the local coordinate system is conducted to squeeze the material along the strip length direction to form the cloaked region. To facilitate the implementation of the acoustic cloak, the multilayer effective medium is used to approximate the non-uniform anisotropic material parameters. The effectiveness of the proposed coordinate transformation method is verified by comparing the results from our method with those in the literature. Firstly, the results of a circular acoustic cloak in the literature are reproduced by using our finite element (FE) simulations for validation. Then, a comparison is made between the traditional coordinate transformation scheme and our new scheme for simulating an elliptical acoustic cloak. The results indicate that the proposed multi-origin coordinate transformation method has a better cloaking effect on the incident wave along the ellipse minor axis direction than the traditional method. This means that for the same object, an appropriate transformation scheme can be selected for different incident wave directions to achieve the optimal control effect. The validated scheme is further used to design an arch-shaped cloak composed of an upper semicircular area and a lower rectangular area, by combining the traditional single-centered coordinate transformation method for the semicircular area and the proposed multi-origin method for the rectangular area. The results show that the designed cloak can effectively control the wave propagation with significantly reduced acoustic pressure level. This work provides a flexible acoustic cloak design method applicable for arbitrary shapes and different wave incident directions, enriching the theory of acoustic cloaking based on coordinate transformation.
Keywords:metamaterial  acoustic cloak  transformation acoustic  region partitioning  finite element (FE) simulation  
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号