首页 | 本学科首页   官方微博 | 高级检索  
     


Anisotropic and valley-resolved beam-splitter based on a tilted Dirac system
Authors:Xixuan Zhou  Jianlong Zheng(       )  Feng Zhai
Affiliation:Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract:We investigate theoretically valley-resolved lateral shift of electrons traversing an npn junction bulit on a typical tilted Dirac system (8-Pmmn borophene). A gauge-invariant formula on Goos–Hänchen (GH) shift of transmitted beams is derived, which holds for any anisotropic isoenergy surface. The tilt term brings valley dependence of relative position between the isoenergy surface in n region and that in the p region. Consequently, valley double refraction can occur at the n–p interface. The exiting positions of two valley-polarized beams depend on the incident angle and energy of incident beam and barrier parameters. Their spatial distance D can be enhanced to be ten to a hundred times larger than the barrier width. Due to tilting-induced high anisotropy of the isoenergy surface, D depends strongly on the barrier orientation. It is always zero when the junction is along the tilt direction of Dirac cones. Thus GH effect of transmitted beams in tilted Dirac systems can be utilized to design anisotropic and valley-resolved beam-splitter.
Keywords:Goos–Hänchen shift  anisotropic isoenergy surface  8-Pmmn borophene  valley double refraction  
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号