首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational analyses prioritize and reveal the deleterious nsSNPs in human angiotensinogen gene
Institution:Department of Physiology, Krishnagar Govt. College, Krishnagar, Nadia, West Bengal, 741101, India
Abstract:Angiotensinogen (AGT) is a key component of renin-angiotensin-aldosterone system (RAAS), which plays central role in blood pressure homeostasis. Association of AGT polymorphisms have been investigated in different ethnic populations in variety of cardiovascular and non-cardiovascular conditions. In this study, 354 non-synonymous SNPs (nsSNPs) of AGT were evaluated to predict damaging and structurally important variants. Majority of the deleterious nsSNPs occurred in the evolutionary conserved regions. Several of these nsSNPs were found to affect post-translational modifications like methylation, glycosylation, phosphorylation, ubiquitination etc. Structural evaluations predicted 19 variants as destabilizing and some of them were also predicted to destabilize the renin-AGT interaction. Therefore, the present computational investigation predicted pathogenic and functionally important variants of human AGT gene. The study has also shown that AGT deregulation is associated with survival outcome in patients with gastric and breast cancer, using microarray gene expression profile. Furthermore, the computationally screened nsSNPs can be analyzed in population based genotyping studies and may help futuristic drug development in the area of AGT pharmacogenomics.
Keywords:Angiotensinogen  Non-synonymous single nucleotide polymorphisms  Protein stability  Pathogenic mutations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号