首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupling between liquid flow and heat flow in porous media: A connection between two classical approaches
Authors:H F M Ten Berge  G H Bolt
Institution:(1) Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, De Dreijen 3, 6703BC Wageningen, The Netherlands;(2) Present address: Center for Agrobiological Research, P.O. Box 14, 700 AA Wageningen, The Netherlands
Abstract:The presented work addresses exclusively to the transport in the liquid (sub)phases occurring in porous media. By analysing the thermodynamics of the solid-liquid and liquid-gas interfaces present within a porous solid-liquid-gas system, it is shown that the forces acting on two distinct subphases of the liquid, due to the presence of a macroscopic temperature gradient, tend to balance each other. Exact counterbalance of the resulting fluxes implies that liquid flow in porous media under nonisothermal conditions is adequately described by the product of isothermal liquid diffusivity and the gradient of volumetric liquid content.It is shown on the basis of physical arguments that in the coefficient matrix, resulting from the analysis of fluxes and forces along the lines of TIP (Thermodynamics of Irreversible Processes), one coupling term vanishes if the liquid content gradient is chosen as the primary driving force. This does not imply that its cross-coefficient, causing the reduced heat flux arising under isothermal conditions from a gradient in liquid content, tends to be zero. The mechanistic Philip and De Vries formulation is reconsidered and is found to be incomplete and not capable of describing true coupling in the thermodynamic sense. Furthermore, the physical interpretation of the so-called reduced heat flux is discussed.
Keywords:Coupling  thermodynamics of irreversible processes  mass-heat flux  Philip and De Vries  reduced heat flux  surface tension
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号