首页 | 本学科首页   官方微博 | 高级检索  
     


Passion for precision.
Authors:Theodor W. Hänsch Prof.
Affiliation:Max-Planck Institute of Quantum Optics, Garching, and Department of Physics, Ludwig-Maximilians University Munich, Germany. t.w.haensch@physik.uni-muenchen.de
Abstract:Optical frequency combs from mode-locked femtosecond lasers have revolutionized the art of counting the frequency of light. They can link optical and microwave frequencies in a single step, and they provide the long missing clockwork for optical atomic clocks. By extending the limits of time and frequency metrology, they enable new tests of fundamental physics laws. Precise comparisons of optical resonance frequencies of atomic hydrogen and other atoms with the microwave frequency of a cesium atomic clock are establishing sensitive limits for possible slow variations of fundamental constants. Optical high harmonic generation is extending frequency comb techniques into the extreme ultraviolet, opening a new spectral territory to precision laser spectroscopy. Frequency comb techniques are also providing a key to attosecond science by offering control of the electric field of ultrafast laser pulses. In our laboratories at Stanford and Garching, the development of new instruments and techniques for precision laser spectroscopy has long been motivated by the goal of ever higher resolution and measurement accuracy in optical spectroscopy of the simple hydrogen atom which permits unique confrontations between experiment and fundamental theory. This lecture recounts these adventures and the evolution of laser frequency comb techniques from my personal perspective.
Keywords:high‐precision spectroscopy  laser spectroscopy  Nobel lecture  optical frequency combs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号