首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic percolation transition induced by phase separation: A Monte Carlo analysis
Authors:S Hayward  Dieter W Heermann  K Binder
Institution:(1) Institut für Physik, Johannes-Gutenberg-Universität Mainz, D-6500 Mainz, Germany
Abstract:The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider ldquoquenching experiments,rdquo where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki ldquospinexchangerdquo dynamics. Analyzing the distributionn l(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.
Keywords:Percolation  phase separation  Monte Carlo simulation  lattice gas model  finite-size scaling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号