首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The behavior of titanium,stainless steel,and copper-nickel alloys as plasma torch cathodes
Authors:J E Kwak  R J Munz
Institution:(1) Plasma Technology Research Centre (CRTP), Department of Chemical Engineering, McGill University, Montreal, Canada
Abstract:Cathode erosion continues to be a problem hindering the widespread application of plasma technology. In this work, cathode erosion was studied on titanium, stainless steel 314, copper-nickel 10% and 30%, and copper 122 for magnetically rotated arcs operating in argon, nitrogen, and argon/hydrogen mixtures at a constant magnetic flux density of 0.1 T Titanium and stainless steel gave very low erosion rates in argon (0.2 and 0.3, mgrg/C respectively). Cupronickels were shown to be suitable for nitrogen and hydrogen plasmas. The slope of hydrogen solubility versus temperature in the cathode material was found to be important in determining hydrogen plasma erosion characteristics. When the plasma gas has a high solubility in the cathode material, or can react with the cathode, a negative erosion rate may result. When gas solubility in the cathode is low, oxide stability and mode of electron emission may govern the erosion rate. A high gas solubility in the cathode material, as with hydrogen, can result in mechanical erosion due to micro-explosions near the cathode surface.
Keywords:Cathode erosion  electrode materials  argon  nitrogen  hydrogen
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号