Abstract: | The process of displacement of a nonwetting fluid has been studied experimentally on a transparent model of a porous medium for various percolation velocities in the stable front regime, when the viscosity of the displacing fluid is greater than that of the fluid displaced. The flow structures in the final displacement regime, when the nonwetting phase is distributed in the pore space in the form of individual drops or ganglia, have been visually investigated. Imbibition is numerically modeled on a two-dimensional network model with allowance for various microdisplacement mechanisms. The effect of the initial displacing phase saturation on the magnitude and structure of the residual displaced fluid saturation is demonstrated. The fractal dimensionality of the displacement boundary is measured.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 116–121, May–June, 1994. |