首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and analysis of nonlinear rotordynamics due to higher order deformations in bending
Authors:Muhammad Rizwan Shad  Guilhem Michon  Alain Berlioz
Affiliation:1. Université de Toulouse, ICA, INSA, 135 Av. Rangueil, 31077 Toulouse, France;2. Université de Toulouse, ICA, ISAE, 10 Av. Edouard Belin, 31055 Toulouse, France;3. Université de Toulouse, ICA, UPS, 118 Route de Narbonne, 31062 Toulouse, France
Abstract:A mathematical model incorporating the higher order deformations in bending is developed and analyzed to investigate the nonlinear dynamics of rotors. The rotor system considered for the present work consists of a flexible shaft and a rigid disk. The shaft is modeled as a beam with a circular cross section and the Euler Bernoulli beam theory is applied with added effects such as rotary inertia, gyroscopic effect, higher order large deformations, rotor mass unbalance and dynamic axial force. The kinetic and strain (deformation) energies of the rotor system are derived and the Rayleigh–Ritz method is used to discretize these energy expressions. Hamilton’s principle is then applied to obtain the mathematical model consisting of second order coupled nonlinear differential equations of motion. In order to solve these equations and hence obtain the nonlinear dynamic response of the rotor system, the method of multiple scales is applied. Furthermore, this response is examined for different possible resonant conditions and resonant curves are plotted and discussed. It is concluded that nonlinearity due to higher order deformations significantly affects the dynamic behavior of the rotor system leading to resonant hard spring type curves. It is also observed that variations in the values of different parameters like mass unbalance and shaft diameter greatly influence dynamic response. These influences are also presented graphically and discussed.
Keywords:Nonlinear rotordynamics   Higher order deformations   Hamilton&rsquo  s principle   Method of multiple scales   Resonant conditions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号