Synthesis, structures, and magnetic properties of metal-coordination polymers with benzenepentacarboxylate linkers |
| |
Authors: | Wang Xin-Yi Sevov Slavi C |
| |
Affiliation: | Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. |
| |
Abstract: | Three hybrid organic-inorganic coordination polymers with benzenepentacarboxylate (BPCA) linkers, [Co3(C6H(COO)5)(OH)(H2O)3] (1-Co), [Zn3(C6H(COO)5)(OH)(H2O)3] (2-Zn), and [Co5(C6H(COO)5)2(H2O)12].(H2O)12 (3-Co), were synthesized hydrothermally and were characterized structurally and magnetically. 1-Co and 2-Zn are isostructural [C2/c; Z=8; 1-Co, a=19.5350(6) A, b=10.4494(4) A, and c=13.2353(5) A, beta=97.2768(8) degrees; 2-Zn, a=19.5418(9) A, b=10.3220(10) A, and c=13.4660(10) A, beta=98.455(10) degrees] with three-dimensional structures that contain [M6] secondary building units bridged by BPCA ligands. A different cobalt-based compound, 3-Co, forms at lower pH and lower reaction temperature. Its structure [P21/c; Z=2; a=12.6162(2) A, b=11.3768(2) A, and c=15.3401(3) A, beta=91.539(1) degrees] is a more loosely packed framework with free (noncoordinated) carboxylic groups pointing at water-filled cavities in the framework. The magnetic phase diagram of 1-Co established through detailed magnetic measurements shows a metamagnetic transition below TN=3.8 K. The less-packed compound 3-Co, on the other hand, remains paramagnetic above 1.9 K. The three compounds are the first examples of coordination polymers with benzenepentacarboxylate linkers and fill the gap of coordination polymers involving benzenepolycarboxylate linkers of the general type C6H6-n(COOH)n, where n=2-6. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|