首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural,electronic and optical properties of LiBeP in its normal and high pressure phases
Authors:A Mellouki  B BennecerF Kalarasse  L Kalarasse
Institution:Physics Laboratory at Guelma, Faculty of Mathematics, Computing and Material Sciences, University 8 Mai 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
Abstract:An investigation on the structural stabilities, electronic and optical properties of LiBeP under high pressure was conducted using the all-electron density functional theory within the local density approximation. Our results show that the sequence of the pressure induced phase transition of LiBeP is the Cu2Sb-type structure (P4/nmm), the MgSrSi-type structure (Pnma) and the LiGaGe-type structure (P63mc). The first transition (P4/nmm to Pnma) takes place at 2.95 GPa and the second (Pnma to P63mc) at 6.65 GPa. In the three phases, the bandgap is indirect and the valence band maximum is at the zone center. With increasing pressure LiBeP in the LiGaGe structure becomes a direct gap semiconductor at 19.75 GPa. The assignments of the structures in the optical spectra and the band structure transitions are discussed. The mean value of the optical dielectric constant for the Cu2Sb phase is smaller than that for the MgSrSi and the LiGaGe ones. This compound has a positive uniaxial anisotropy in the LiGaGe structure. The absorption coefficient along the z   direction, αzzαzz, for the MgSrSi structure is higher than that in the other two structures in the visible regime.
Keywords:A  Semiconductors  C  ab initio calculations  D  Phase transitions  D  Electronic properties  D  Optical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号