首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 1. Adiabatic and diabatic potential surfaces
Authors:Fishchuk Anna V  Merritt Jeremy M  van der Avoird Ad
Institution:Theoretical Chemistry, IMM, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
Abstract:The three adiabatic potential surfaces of the Br(2P)-HCN complex that correlate to the 2P ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of four diabatic potential surfaces required to define the full 3 x 3 matrix of diabatic potentials. Each of these diabatic potential surfaces was expanded in terms of the appropriate spherical harmonics in the atom-linear molecule Jacobi angle theta. The dependence of the expansion coefficients on the distance R between Br and the HCN center of mass and on the CH bond length was fit to an analytic form. For HCN in its equilibrium geometry, the global minimum with De = 800.4 cm(-1) and Re = 6.908a0 corresponds to a linear Br-NCH geometry, with an electronic ground state of Sigma symmetry. A local minimum with De = 415.1 cm-1, Re = 8.730a0, and a twofold degenerate Pi ground state is found for the linear Br-HCN geometry. The binding energy, De, depends strongly on the CH bond length for the Br-HCN complex and much less strongly for the Br-NCH complex, with a longer CH bond giving stronger binding for both complexes. Spin-orbit coupling was included and diabatic states were constructed that correlate to the ground 2P3/2 and excited 2P1/2 spin-orbit states of the Br atom. For the ground spin-orbit state with electronic angular momentum j = (3/2) the minimum in the potential for projection quantum number omega = +/-(3/2) coincides with the local minimum for linear Br-HCN of the spin-free case. The minimum in the potential for projection quantum number omega = +/-(1/2) occurs for linear Br-NCH but is considerably less deep than the global minimum of the spin-free case. According to the lowest spin-orbit coupling included adiabatic potential the two linear isomers, Br-NCH and Br-HCN, are about equally stable. In the subsequent paper, we use these potentials in calculations of the rovibronic states of the Br-HCN complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号