Regulation of Excited-State Intramolecular Proton Transfer Process and Photophysical Properties for Benzoxazole Isothiocyanate Fluorescent Dyes by Changing Atomic Electronegativity |
| |
Authors: | Hongling Zhang Qingtong Liu Yiying Wang Zhe Tang Panwang Zhou |
| |
Affiliation: | a.Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Chinab.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China |
| |
Abstract: | Excited-state intramolecular proton transfer (ESIPT) is favored by researchers because of its unique optical properties. However, there are relatively few systematic studies on the effects of changing the electronegativity of atoms on the ESIPT process and photophysical properties. Therefore, we selected a series of benzoxazole isothiocyanate fluorescent dyes (2-HOB, 2-HSB, and 2-HSeB) by theoretical methods, and systematically studied the ESIPT process and photophysical properties by changing the electronegativity of chalcogen atoms. The calculated bond angle, bond length, energy gap, and infrared spectrum analysis show that the order of the strength of intramolecular hydrogen bonding of the three molecules is 2-HOB < 2-HSB < 2-HSeB. Correspondingly, the magnitude of the energy barrier of the potential energy curve is 2-HOB > 2-HSB > 2-HSeB. In addition, the calculated electronic spectrum shows that as the atomic electronegativity decreases, the emission spectrum has a redshift. Therefore, this work will offer certain theoretical guidance for the synthesis and application of new dyes based on ESIPT properties. |
| |
Keywords: | Excited-state intramolecular proton transfer Photophysical properties Energy barrier Electronegativity |
|
| 点击此处可从《化学物理学报(中文版)》浏览原始摘要信息 |
|
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文 |
|