首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Second-Order Semi-Implicit Method for the Inertial Landau-Lifshitz-Gilbert Equation
Authors:Panchi Li  Lei Yang  Jin Lan  Rui Du & Jingrun Chen
Abstract:Electron spins in magnetic materials have preferred orientations collectively and generate the macroscopic magnetization. Its dynamics spans over a wide range of timescales from femtosecond to picosecond, and then to nanosecond. The Landau-Lifshitz-Gilbert (LLG) equation has been widely used in micromagnetics simulations over decades. Recent theoretical and experimental advances have shown that the inertia of magnetization emerges at sub-picosecond timescales and contributes significantly to the ultrafast magnetization dynamics, which cannot be captured intrinsically by the LLG equation. Therefore, as a generalization, the inertial LLG (iLLG) equation is proposed to model the ultrafast magnetization dynamics. Mathematically, the LLG equation is a nonlinear system of parabolic type with (possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed hyperbolic-parabolic type with degeneracy, and exhibits more complicated structures. It behaves as a hyperbolic system at sub-picosecond timescales, while behaves as a parabolic system at larger timescales spanning from picosecond to nanosecond. Such hybrid behaviors impose additional difficulties on designing efficient numerical methods for the iLLG equation. In this work, we propose a second-order semi-implicit scheme to solve the iLLG equation. The second-order temporal derivative of magnetization is approximated by the standard centered difference scheme, and the first-order temporal derivative is approximated by the midpoint scheme involving three time steps. The nonlinear terms are treated semi-implicitly using one-sided interpolation with second-order accuracy. At each time step, the unconditionallyunique solvability of the unsymmetric linear system is proved with detailed discussions on the condition number. Numerically, the second-order accuracy of the proposed method in both time and space is verified. At sub-picosecond timescales, the inertial effect of ferromagnetics is observed in micromagnetics simulations, in consistency with the hyperbolic property of the iLLG model; at nanosecond timescales, the results of the iLLG model are in nice agreements with those of the LLG model, in consistency with the parabolic feature of the iLLG model.
Keywords:Inertial Landau-Lifshitz-Gilbert equation  semi-implicit scheme  second-order accuracy  micromagnetics simulations  
点击此处可从《高等学校计算数学学报(英文版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号