首页 | 本学科首页   官方微博 | 高级检索  
     


Seaweed-Derived Hierarchically Porous Carbon for Highly Efficient Removal of Tetracycline
Authors:Wen-xiu Qin  Na Sun  Guo-zhong Wang  Hai-min Zhang  Yun-xia Zhang
Affiliation:a.Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, Chinab.School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
Abstract:Herein we present a facile approach for the preparation of a novel hierarchically porous carbon, in which seaweeds serve as carbon source and KOH as activator. The fabricated KOH-activated seaweed carbon (K-SC) displays strong affinity towards tetracycline with maximum uptake quantity of 853.3 mg/g, significantly higher than other tetracycline adsorbents. The superior adsorption capacity ascribes to large specific surface area (2614 mbegin{document}$ ^2 $end{document}/g) and hierarchically porous structure of K-SC, along with strong begin{document}$ pi $end{document}-begin{document}$ pi $end{document} interactions between tetracycline and K-SC. In addition, the as-prepared K-SC exhibits fast adsorption kinetics, capable of removing 99% of tetracycline in 30 min. Meanwhile, the exhausted K-SC can be regenerated for four cycling adsorption without an obvious degradation in capacities. More importantly, pH and ionic strengths barely affect the adsorption performance of K-SC, implying electrostatic interactions hardly play any role in tetracycline adsorption process. Furthermore, the K-SC packed fixed-bed column (0.1 g of adsorbents) can continually treat 2780 mL solution spiked with 5.0 mg/g tetracycline before reaching the breakthrough point. All in all, the fabricated K-SC equips with high adsorption capacity, fast adsorption rate, glorious anti-interference capability and good reusability, which make it hold great feasibilities for treating tetracycline contamination in real applications.
Keywords:Hierarchically porous carbon   Tetracycline   Adsorption mechanism   Fixed-bed column
点击此处可从《化学物理学报(中文版)》浏览原始摘要信息
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号