首页 | 本学科首页   官方微博 | 高级检索  
     


Graph Sparsification by Universal Greedy Algorithms
Authors:Ming-Jun Lai  Jiaxin Xie & Zhiqiang Xu
Abstract:Graph sparsification is to approximate an arbitrary graph by a sparse graph and is useful in many applications, such as simplification of social networks, least squares problems, and numerical solution of symmetric positive definite linear systems. In this paper, inspired by the well-known sparse signal recovery algorithm called orthogonal matching pursuit (OMP), we introduce a deterministic, greedy edge selection algorithm, which is called the universal greedy approach (UGA) for the graph sparsification problem. For a general spectral sparsification problem, e.g., the positive subset selection problem from a set of $m$ vectors in $mathbb{R}^n$, we propose a nonnegative UGA algorithm which needs $O(mn^2+ n^3/epsilon^2)$ time to find a $frac{1+epsilon/beta}{1-epsilon/beta}$-spectral sparsifier with positive coefficients with sparsity at most $lceilfrac{n}{epsilon^2}rceil$, where $beta$ is the ratio between the smallest length and largest length of the vectors. The convergence of the nonnegative UGA algorithm is established. For the graph sparsification problem, another UGA algorithm is proposed which can output a $frac{1+O(epsilon)}{1-O(epsilon)}$-spectral sparsifier with $lceilfrac{n}{epsilon^2}rceil$ edges in $O(m+n^2/epsilon^2)$ time from a graph with $m$ edges and $n$ vertices under some mild assumptions. This is a linear time algorithm in terms of the number of edges that the community of graph sparsification is looking for. The best result in the literature to the knowledge of the authors is the existence of a deterministic algorithm which is almost linear, i.e. $O(m^{1+o(1)})$ for some $o(1)=O(frac{(loglog(m))^{2/3}}{log^{1/3}(m)})$. Finally, extensive experimental results, including applications to graph clustering and least squares regression, show the effectiveness of proposed approaches.
Keywords:Spectral sparsification   Subset selection   Greedy algorithms   Graph clustering   Linear sketching.
点击此处可从《计算数学(英文版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号