首页 | 本学科首页   官方微博 | 高级检索  
     


High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Affiliation:Key Laboratory of Modern Acoustics(Ministry of Education), Institute of Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract:In the past decade, one-way manipulation of sound has attracted rapidly growing attention with application potentials in a plethora of scenarios ranging from ultrasound imaging to noise control. Here we propose a design of a planar device capable of unidirectionally harnessing the transmitted wavefront for broadband airborne sound. Our mechanism is to use the broken spatial symmetry to give rise to different critical angles for plane waves incident along opposite directions. Along the positive direction, the incoming sound is allowed to pass with high efficiency and be arbitrarily molded into the desired shape while any reversed wave undergoes a total reflection. We analytically derive the working bandwidth and incident angle range, and present a practical implementation of our strategy. The performance of our proposed device is demonstrated both theoretically and numerically via distinct examples of production of broadband anomalous refraction, acoustic focusing and non-diffractive beams for forward transmitted wave while virtually blocking the reversed waves. Bearing advantages of simple design, planar profile, broad bandwidth and high efficiency, our design opens the possibility for novel one-way acoustic device and may have important impact on diverse applications in need of special control of airborne sound.
Keywords:acoustic metamaterials  one-way wavefront manipulation  broadband planar device  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号