首页 | 本学科首页   官方微博 | 高级检索  
     


Random vibration of hysteretic systems under Poisson white noise excitations
Authors:Lincong CHEN  Zi YUAN  Jiamin QIAN  J. Q. SUN
Affiliation:1. College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian Province, China;2. Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, Xiamen 361021, Fujian Province, China;3. Department of Mechanical Engineering, School of Engineering, University of California, Merced, CA 95343, U. S. A.
Abstract:Hysteresis widely exists in civil structures, and dissipates the mechanical energy of systems. Research on the random vibration of hysteretic systems, however, is still insufficient, particularly when the excitation is non-Gaussian. In this paper, the radial basis function (RBF) neural network (RBF-NN) method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations. The solution to the reduced generalized Fokker-PlanckKolmogorov (GFPK) equation is expressed in terms of the RBF-NNs with the Gaussian activation functions, whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition. A steel fiber reinforced ceramsite concrete (SFRCC) column loaded by the Poisson white noise is studied as an example to illustrate the solution process. The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated, and the obtained results are compared with those obtained by the Monte Carlo simulations (MCSs). The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.
Keywords:random vibration  Bouc-Wen hysteresis system  non-Gaussian excitation  Poisson white noise excitation  radial basis function (RBF) neural network (RBF-NN)  
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号