Nitrogen-tailored quasiparticle energy gaps of polyynes |
| |
Affiliation: | 1.State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
| |
Abstract: | Polyyne, an sp1-hybridized linear allotrope of carbon, has a tunable quasiparticle energy gap, which depends on the terminated chemical ending groups as well as the chain length. Previously, nitrogen doping was utilized to tailor the properties of different kinds of allotrope of carbon. However, how the nitrogen doping tailors the properties of the polyyne remains unexplored. Here, we applied the GW method to study the quasiparticle energy gaps of the N-doped polyynes with different lengths. When a C atom is substituted by an N atom in a polyyne, the quasiparticle energy gap varies with the substituted position in the polyyne. The modification is particularly pronounced when the second-nearest-neighboring carbon atom of a hydrogen atom is substituted. In addition, the nitrogen doping makes the Fermi level closer to the lowest unoccupied molecular orbital, resulting in an n-type semiconductor. Our results suggest another route to tailor the electronic properties of polyyne in addition to the length of polyyne and the terminated chemical ending groups. |
| |
Keywords: | polyyne nitrogen-doping quasiparticle energy gap GW calculations |
|
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|