首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Institution:School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:The measuring of the depth profile and electrical activity of implantation impurity in the top nanometer range of silicon encounters various difficulties and limitations, though it is known to be critical in fabrication of silicon complementary metal-oxide-semiconductor (CMOS) devices. In the present work, SRIM program and photocarrier radiometry (PCR) are employed to monitor the boron implantation in industrial-grade silicon in an ultra-low implantation energy range from 0.5 keV to 5 keV. The differential PCR technique, which is improved by greatly shortening the measurement time through the simplification of reference sample, is used to investigate the effects of implantation energy on the frequency behavior of the PCR signal for ultra-shallow junction. The transport parameters and thickness of shallow junction, extracted via multi-parameter fitting the dependence of differential PCR signal on modulation frequency to the corresponding theoretical model, well explain the energy dependence of PCR signal and further quantitatively characterize the recovery degree of structure damage induced by ion implantation and the electrical activation degree of impurities. The monitoring of nm-level thickness and electronic properties exhibits high sensitivity and apparent monotonicity over the industrially relevant implantation energy range. The depth profiles of implantation boron in silicon with the typical electrical damage threshold (YED) of 5.3×1015 cm-3 are evaluated by the SRIM program, and the determined thickness values are consistent well with those extracted by the differential PCR. It is demonstrated that the SRIM and the PCR are both effective tools to characterize ultra-low energy ion implantation in silicon.
Keywords:ultra-low energy ion implantation  differential nonlinear photocarrier radiometry  junction depth  electronic transport parameters  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号