Molecular orbital theory of the hydrogen bond. 24. Ground-state water–uracil complexes |
| |
Authors: | Janet E. Del Bene |
| |
Abstract: | Ab initio SCF calculations with the STO -3G basis set have been performed to investigate the structural, energetic, and electronic properties of mixed water–uracil dimers formed at the six hydrogen-bonding sites in the uracil molecular plane. Hydrogen-bond formation at three of the carbonyl oxygen sites leads to cyclic structures in which a water molecule bridges N1? H and O2, N3? H and O2, and N3? H and O4. Open structures form at O4, N1? H, and N3? H. The two most stable structures, with energies of 9.9 and 9.7 kcal/mole, respectively, are the open structure at N1? H and the cyclic one at N1? H and O2. These two are easily interconverted, and may be regarded as corresponding to just one “wobble” dimer. At 1 kcal/mole higher in energy is another “wobble” dimer consisting of an open structure at N3? H and a cyclic structure at N3? H and O4. The third cyclic structure at N3? H and O2 collapses to the “wobble” dimer at N3? H and O4. The two “wobble” dimers are significantly more stable than the open dimer formed at O4, which has a stabilization energy of 5.4 kcal/mole. Uracil is a stronger proton donor to water through N1? H than N3? H, owing to a more favorable molecular dipole moment alignment when association occurs through H1. Hydration of uracil by additional water molecules has also been investigated. Dimer stabilization energies and hydrogen-bond energies are nearly additive in most 2:1 water:uracil structures. There are three stable “wobble” trimers, which have stabilization energies that vary from 7 to 9 kcal/mole per water molecule. Hydrogen-bond strengths are slightly enhanced in 3:1 water:uracil structures, but the cooperative effect in hydrogen bonding is still relatively small. The single stable water–uracil tetramer is a “wobble” tetramer, with two water molecules which are relatively free to move between adjacent hydrogen-bonding sites, and a stabilization energy of approximately 8 kcal/mole per water molecule. Within the rigid dimer approximation, successive hydration of uracil is limited to the addition of one, two, or three water molecules. |
| |
Keywords: | |
|
|