首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of solid-state conversion of non-stoichiometric hydroxyapatite to diphase calcium phosphate
Authors:Dorozhkin  S. V.
Affiliation:(1) Nicol Hall, Queen"s University, 60 Union Street, Kingston, ON, K7L 3N6, Canada
Abstract:Two non-stoichiometric hydroxyapatites (n-HA) with Ca/P molar ratios of 1.50 and 1.58 and one stoichiometric hydroxyapatite (s-HA) with Ca/P = 1.67 were prepared from chemically pure CaHPO4·2H2O and KOH. After sintering at 1050 °C for 4 h, n-HA with Ca/P = 1.50 was transformed into beta-Ca3(PO4)2, n-HA with Ca/P = 1.58 was converted to diphase calcium phosphate (DCP), while s-HA underwent no chemical transformations. The sintered and unsintered samples of hydroxyapatite were studied by IR spectroscopy, chemical analysis, and X-ray diffraction analysis. The crystallite dimensions were calculated, and a model for the DCP structure was proposed. The mechanism of the solid-state n-HA to DCP conversion was proposed on the basis of this model and published values of the volume diffusion coefficients of the OH, Ca2+, and PO43– ions at 1000 °C.
Keywords:hydroxyapatite  calcium phosphate  solid-state reactions  X-ray diffraction analysis  IR spectroscopy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号