首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photochemical inactivation of trypsin
Authors:A G Kaluskar  L I Grossweiner
Abstract:Abstract —The quantum yield for inactivation of aqueous trypsin fits the expression φfrfrφ‘r, where fr, is the fraction of incident light absorbed by residues of type r and the φ’r are constants. The values φ‘trp= 0.012, φtyr= 0.005 and φ’eys= 0.10, obtained at pH 3 in the wavelength range 240–290 nm, are attributed to independent events by comparing with quantum yields of the initial photochemical products and permanent residue destruction. The proposed inactivating processes are photoionization of one essential tryptophyl residue, photolysis of one essential cystyl residue, and splitting of an essential cystyl residue induced by light absorption in a nearby tyrosyl residue. The initial photochemical process from pH 3–7 identified by flash photolysis is the ejection of electrons from approximately two tryptophyl residues, leading to the formation of the disulfide bridge electron adduct and the hydrated electron. It is proposed that one photoionized tryptophyl residue is permanently disrupted and the other is restored through a back reaction that leads to a damaged, active enzyme form. An enhanced inactivation quantum yield at flash photolysis light intensities is attributed to a biphotonic process. A model based on one-photon photoionization of tryptophan from a short-lived precursor of the fluorescent state and the biphotonic photoionization of tryptophan via the triplet state is consistent with the experimental results.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号