首页 | 本学科首页   官方微博 | 高级检索  
     


Surface-enhanced spectroscopic investigation of the adsorption properties of hydroxybenzoic acid isomers onto metallic surfaces
Authors:Donald Perry   Jacob Boucher   Krystal Posey   Scott Cordova   Lauren Smith   Hye Jin Son   Ram Pandey  Alexandru S. Biris  
Affiliation:aDepartment of Chemistry, University of Central Arkansas, Conway, AR 72035, United States;bDepartment of Applied Sciences, Nanotechnology Center, University of Arkansas, Little Rock, AR 72204, United States
Abstract:Surface-enhanced Raman Spectroscopy (SERS), surface-enhanced infrared absorption spectroscopy (SEIRA), temperature-programmed desorption (TPD), and density functional theory were used to characterize the adsorption properties of the hydroxybenzoic acid (HBA) isomers including ortho-hydroxybenzoic acid (OHA), meta-hydroxybenzoic acid (MHA), and para-hydroxybenzoic acid (PHA) using various deposition solvents with different polar properties. SERS typically enhances the Raman shifts of the monolayer, while SEIRA is a longer range effect, often providing vibrational enhancement to both the monolayer and multilayer. TPD analysis showed that OHA adsorption to silver is weaker than MHA/PHA, most likely as a result of the strong OHA intramolecular hydrogen-bonding. SERS and SEIRA demonstrated that OHA ionized efficiently in the monolayer and multilayer independent of the solvent polarity because of OHA's low pKa (2.98). MHA/PHA ionized better than OHA in the multilayer in less polar deposition solvents, and a decrease in the polarity of the deposition solvent created additional ordering in the MHA monolayer while inducing stronger adsorption in the PHA monolayer. It is believed that a lower level of solvation with less polar deposition solvents allowed for more adsorbate/substrate interaction and more intermolecular attraction. The addition of more MHA to a multilayer resulted only in stronger SEIRA peaks. As a PHA multilayer thickened there was significant structural changes represented by new bands and spectral peak shifts with greater intermolecular attraction as the multilayer approached bulk properties. Due to the range of applications involving HBA isomers, these studies could find significant applications in biochemistry, medicine, nanotechnology and environmental science.
Keywords:SEIRA   SERS   Surface-enhanced   Hydroxybenzoic acid   FTIR-ATR
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号