Characterization of micromachined hollow tips for two-dimensional nanoelectrospray mass spectrometry |
| |
Authors: | Sjödahl Johan Melin Jessica Griss Patrick Emmer Asa Stemme Göran Roeraade Johan |
| |
Affiliation: | Department of Analytical Chemistry, Royal Institute of Technology, 100 44 Stockholm, Sweden. |
| |
Abstract: | In this work an improved design of chip-based nanoelectrospray nozzles is reported. Two-dimensional matrices of out-of-plane 10 microm i.d. silicon dioxide tips with a tapered shape were manufactured using deep reactive ion etching technology. Using a peptide sample, six micromachined tips and six commercially pulled silica capillary tips were compared employing an ion trap mass spectrometer. At a flow rate of 100 nL/min, the detectability obtained was approximately the same for the two types of tips. The relative standard deviation of the signal-to-noise ratio for the peptides between six different tips was on average 22% for the micromachined tips and 45% for the pulled capillary tips. The usefulness of the micromachined tips for analysis of non-covalent protein-ligand complexes was demonstrated by the analysis of a sample of RNase A and cytidine 2'-monophosphate. In another test, analyzing a tryptic digest of 1 pmol/microL cytochrome C, 18 peptides corresponding to a 82% sequence coverage were detected. Using MS/MS, the whole sequence of an 11 amino acid cytochrome C fragment was obtained. Computer simulations were performed on the shape and magnitude of the electrical field around micromachined and pulled capillary tips. To reach the threshold electric field density at the tip apex required to initiate an electrospray, a higher electrospray voltage was needed for the chip-based tips compared with pulled capillary tips. This is due to the influence of the chip base. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|