首页 | 本学科首页   官方微博 | 高级检索  
     


The size effect on void growth in ductile materials
Authors:B. Liu  Y. Huang  K.C. Hwang  C. Liu
Affiliation:a Department of Mechanical and Industrial Engineering, University of Illinois, 1206 W. Green Street, Urbana, IL 61801, USA
b Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
c Alcoa Technical Center, Aluminum Company of America, Alcoa Center, PA 15069, USA
d Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Abstract:We have extended the Rice-Tracey model (J. Mech. Phys. Solids 17 (1969) 201) of void growth to account for the void size effect based on the Taylor dislocation model, and have found that small voids tend to grow slower than large voids. For a perfectly plastic solid, the void size effect comes into play through the ratio εl/R0, where l is the intrinsic material length on the order of microns, ε the remote effective strain, and R0 the void size. For micron-sized voids and small remote effective strain such that εl/R0?0.02, the void size influences the void growth rate only at high stress triaxialities. However, for sub-micron-sized voids and relatively large effective strain such that εl/R0>0.2, the void size has a significant effect on the void growth rate at all levels of stress triaxiality. We have also obtained the asymptotic solutions of void growth rate at high stress triaxialities accounting for the void size effect. For εl/R0>0.2, the void growth rate scales with the square of mean stress, rather than the exponential function in the Rice-Tracey model (1969). The void size effect in a power-law hardening solid has also been studied.
Keywords:Voids   Size effect   Void growth rate   Strain gradient plasticity   Taylor dislocation model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号