首页 | 本学科首页   官方微博 | 高级检索  
     

基于可见/近红外光谱的鹅鸭混合绒定量检测研究
引用本文:Xu HR,Song BG,Wan WJ,Zhou Y,Ying YB. 基于可见/近红外光谱的鹅鸭混合绒定量检测研究[J]. 光谱学与光谱分析, 2012, 32(4): 974-977
作者姓名:Xu HR  Song BG  Wan WJ  Zhou Y  Ying YB
作者单位:浙江大学生物系统工程与食品科学学院;浙江出入境检验检疫局国家级羽毛绒检测重点实验室
基金项目:国家自然科学基金项目(61005022);浙江省科技计划项目(2009C31137)资助
摘    要:鹅绒和鸭绒的外观相似但在品质上鹅绒优于鸭绒,各国羽绒毛标准对鹅绒毛中的鸭绒毛含量都有最高限定。传统检测方法为高倍显微镜目测法,该方法劳动强度大,且不适宜大批量样本的分析及现场快速检测。利用可见/近红外光谱结合连续投影算法(SPA)特征波长选择的建模方法对鹅绒中混有鸭绒含量进行了定量检测。在450~930nm范围内,通过SPA选择的8个特征波长建立多元线性回归模型,取得了较好的预测结果,相关系数为0.983,校正均方根误差(RMSEC)为5.44%,预测均方根误差(RMSEP)为5.75%,有望用于羽绒毛品质的快速检测。

关 键 词:羽绒品质  定量分析  可见/近红外光谱  连续投影算法  波长选择

Quantitative analysis of goose and duck mixed down using visible/NIR spectroscopy
Xu Hui-rong,Song Bao-guo,Wan Wang-jun,Zhou Ying,Ying Yi-bin. Quantitative analysis of goose and duck mixed down using visible/NIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2012, 32(4): 974-977
Authors:Xu Hui-rong  Song Bao-guo  Wan Wang-jun  Zhou Ying  Ying Yi-bin
Affiliation:College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. hrxu@zju.edu.cn
Abstract:Goose down and duck down have very similar appearance but the quality of goose down is better than that of duck down in general. There is a highest allowable limit as specified by the various national standards of feather and down for the percentage of duck feather or down mixed in goose feather or down. Traditional detection method, manual inspection with a high-scale microscope, is labor intensive and not suitable for large-volume samples analysis and on-site rapid testing. In the present paper, visible/near-infrared (NIR) spectroscopy combined with successive projection algorithm (SPA) for characteristic wavelengths selection was used to determinate the content of duck down mixed in goose down. In the range of 450-930 nm, the multiple linear regression (MLR) model established with the 8 characteristic wavelengths selected by SPA achieved good prediction, the correlation coefficient of 0.983, root mean square error of calibration (RMSEC) of 5.44%, and root mean square error of prediction (RMSEP) of 5.75%. Therefore, it is expected to be used for rapid detection of feather and down quality in future.
Keywords:Down quality  Quantitative analysis  Visible/NIR spectroscopy  Successive projection algorithm  Wavelength selection
本文献已被 CNKI PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号