首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Neutron diffraction study of unusual phase separation in the antiperovskite nitride Mn3ZnN
Authors:Sun Ying  Wang Cong  Huang Qingzhen  Guo Yanfeng  Chu Lihua  Arai Masao  Yamaura Kazunari
Institution:Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191, PR China.
Abstract:The antiperovskite Mn(3)ZnN is studied by neutron diffraction at temperatures between 50 and 295 K. Mn(3)ZnN crystallizes to form a cubic structure at room temperature (C1 phase). Upon cooling, another cubic structure (C2 phase) appears at around 177 K. Interestingly, the C2 phase disappears below 140 K. The maximum mass concentration of the C2 phase is approximately 85% (at 160 K). The coexistence of C1 and C2 phase in the temperature interval of 140-177 K implies that phase separation occurs. Although the C1 and C2 phases share their composition and lattice symmetry, the C2 phase has a slightly larger lattice parameter (Δa ≈ 0.53%) and a different magnetic structure. The C2 phase is further investigated by neutron diffraction under high-pressure conditions (up to 270 MPa). The results show that the unusual appearance and disappearance of the C2 phase is accompanied by magnetic ordering. Mn(3)ZnN is thus a valuable subject for study of the magneto-lattice effect and phase separation behavior because this is rarely observed in nonoxide materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号