首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen atom abstraction reactions of the sugar moiety of 2′‐deoxyguanosine with an OH radical: A quantum chemical study
Authors:P. K. Shukla  N. Kumar  P. C. Mishra
Affiliation:Department of Physics, Banaras Hindu University, Varanasi 221005, India
Abstract:Mechanisms of hydrogen atom abstraction reactions of the sugar moiety of 2′‐deoxyguanosine with an OH radical were investigated using the B3LYP and BHandHLYP functionals of density functional theory and the second order Møller–Plesset Perturbation (MP2) theory in gas phase and aqueous media. The 6‐31+G* and AUG‐cc‐pVDZ basis sets were used. Gibbs free barrier energies and rate constants of the reactions in aqueous media suggest that an OH radical would abstract the hydrogen atoms of the sugar moiety of 2′‐deoxyguanosine in the following order of preference: H5′ ≈ H5″ > H3′ > H4′ > H1′ ≈ H2′ > H2″, the rate constant for H5′ abstraction being 103–105 times greater than that for H2″ at the different levels of theory. Relative stabilities of the different deoxyribose radicals are also discussed. The most and least favored hydrogen abstraction reactions found here are in agreement with experimental observation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
Keywords:DNA  hydrogen atom abstraction reactions  sugar radicals  2′  ‐deoxyguanosine  OH radical
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号