首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of elastic scattering and analyzer‐acceptance angle on the analysis of angle‐resolved X‐ray photoelectron spectroscopy data
Authors:C J Powell  W S M Werner  W Smekal
Institution:1. Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899‐8370, USA;2. Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8‐10, Vienna A‐1040, Austria
Abstract:We have made calculations of N 1s, O 1s, Si(oxide) 2p, Hf 4f, and Si(substrate) 2p photoelectron intensities at selected emission angles for films of SiO1.6N0.4 and HfO1.9N0.1 of various thicknesses on silicon. These calculations were made with the National Institute of Standards and Technology (NIST) Database for Simulation of Electron Spectra for Surface Analysis (SESSA) to investigate effects of elastic scattering and analyzer‐acceptance angle that could be relevant in the analysis of angle‐resolved X‐ray photoelectron spectroscopy (ARXPS) experiments. The simulations were made for an XPS configuration with a fixed angle between the X‐ray source (i.e. for the sample‐tilting mode of ARXPS) and with Al and Cu Kα X‐ray sources. The no‐loss intensities changed appreciably as elastic scattering was switched ‘on’ and ‘off’, but changing the analyzer‐acceptance angle had a smaller effect. Ratios of intensities for each line from the overlayer film for the least realistic model condition (elastic scattering switched ‘off’, small analyzer‐acceptance angle) to those from the most realistic model condition (elastic scattering switched ‘on’, finite analyzer‐acceptance angle) changed relatively slowly with emission angle, but the corresponding intensity ratio for the Si(substrate) 2p line changed appreciably with emission angle. The latter changes, in particular, indicate that neglect of elastic‐scattering effects can lead to erroneous results in the analysis of measured ARXPS data. The elastic‐scattering effects were larger in HfO1.9N0.1 than in SiO1.6N0.4 (due to the larger average atomic number in the former compound) and were larger with the Al Kα X‐ray source than with the Cu Kα source because of the larger cross sections for elastic scattering at the lower photoelectron energies. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:XPS  angle‐resolved XPS  elastic scattering  analyzer‐acceptance angle  silicon oxynitride  hafnium oxynitride
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号