首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Position‐specific carbon isotope analysis of trichloroacetic acid by gas chromatography/isotope ratio mass spectrometry
Authors:Florian Breider  Daniel Hunkeler
Institution:Centre for Hydrogeology and Geothermics (CHYN), University of Neuchatel, , CH‐2000 Neuchatel, Switzerland
Abstract:Trichloroacetic acid (TCAA) is an important environmental contaminant present in soils, water and plants. A method for determining the carbon isotope signature of the trichloromethyl position in TCAA using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) was developed and tested with TCAA from different origins. Position‐specific isotope analysis (PSIA) can provide direct information on the kinetic isotope effect for isotope substitution at a specific position in the molecule and/or help to distinguish different sources of a compound. The method is based on the degradation of TCAA into chloroform (CF) and CO2 by thermal decarboxylation. Since thermal decarboxylation is associated with strong carbon isotope fractionation (ε = ?34.6 ± 0.2‰) the reaction conditions were optimized to ensure full conversion. The combined isotope ratio of CF and CO2 at the end of the reaction corresponded well to the isotope ratio of TCAA, confirming the reliability of the method. A method quantification limit (MQL) for TCAA of 18.6 µg/L was determined. Samples of TCAA produced by enzymatic and non‐enzymatic chlorination of natural organic matter (NOM) and some industrially produced TCAA were used as exemplary sources. Significant different PSIA isotope ratios were observed between industrial TCAA and TCAA samples produced by chlorination of NOM. This highlights the potential of the method to study the origin and the fate of TCAA in the environment. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号