首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Systematic evaluation of acetone and acetonitrile for use in hydrophilic interaction liquid chromatography coupled with electrospray ionization mass spectrometry of basic small molecules
Authors:James Heaton  Michael D Jones  Cristina Legido‐Quigley  Robert S Plumb  Norman W Smith
Institution:1. Pharmaceutical Science Division, School of Biomedical and Health Sciences, King's College London, , London, SE1 9NH UK;2. Waters Corporation, , Milford, MA, 01757 USA
Abstract:Sub‐2‐µm particle size hydrophilic interaction liquid chromatography HILIC] combined with mass spectrometry has been increasing in popularity as a complementary technique to reversed‐phase LC for the analysis of polar analytes. The organic‐rich mobile phase associated with HILIC techniques provides increases in compound ionization, due to increased desolvation efficiency during electrospray ionisation mass spectrometric (ESI‐MS) analysis. Although recent publications illustrated selectivity and response comparisons between reversed‐phase LC/MS and HILIC LC/MS, there are limited discussions evaluating the optimisation of the mass spectrometry parameters regarding analytes and alternative mobile phases. The use of acetone as an alternative organic modifier in HILIC has been investigated with respect to signal‐to‐noise in ESI‐MS for a variety of polar analytes. Analyte reponses were measured based on a variety of cone and capillary voltages at low and high pH in both acetone and acetonitrile. In order to visualise compound behaviour in the ESI source, surface plots were constructed to assist in interpreting the observed results. The use of acetone in ESI is complicated at low m/z due to the formation of condensation products. Favourable responses were observed for certain analytes and we envisage offering an insight into the use of acetone as an alternative to acetonitrile under certain analytical conditions for particular compound classifications for small molecule analysis. We also highlight the importance of optimising source voltages in order to obtain the maximum signal stability and sensitivity, which are invariably, highly solvent composition dependent parameters. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号