首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study of mechanism of extraction reaction between silylene carbene and its derivatives and ethylene oxide
Authors:Xiu Hui Lu  Xin Che  Jun Feng Han  Le Yi Shi  Zhen Xia Lian
Institution:School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
Abstract:The mechanism of the oxide extraction reaction between singlet silylene carbene and its derivatives X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide has been investigated with density functional theory, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps, the first step is the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; the second step is the INT then generates a product via a transition state (TS). This kind reaction has similar mechanism, when the silylene carbene and its derivatives X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide close to each other, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Si = C: gives a p → p donor–acceptor bond, thereby leading to the formation of INT. As the p → p donor–acceptor bond continues to strengthen (that is, the C? O bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity, which mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
Keywords:silylene carbene  extraction reaction  potential energy surface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号