首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Well‐defined succinylated chitosan‐O‐poly(oligo(ethylene glycol)methacrylate) for pH‐reversible shielding of cationic nanocarriers
Authors:Chengjun Kang  Lin Yu  Guoqiang Cai  Liqun Wang  Hongliang Jiang
Institution:1. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;2. Key Laboratory of Macromolecule Synthesis and Fuctionalization, Zhejiang University, Ministry of Education, Hangzhou 310027, China
Abstract:A novel type of well‐defined graft copolymer, succinylated chitosan‐O‐poly(oligo(ethylene glycol)methacrylate) (SC‐POEGMA), was developed for pH‐reversible poly(ethylene glyocol) (PEG) shielding of cationic nanocarriers. Chitosan‐O‐POEGMA (CS‐POEGMA) was first synthesized via single electron transfer‐living radical polymerization of oligo(ethylene glyol) methacrylate (OEGMA) using O‐brominated chitosan (CS‐Br) as a macromolecular initiator and Cu(I)Br/1,1,4,7,10,10‐hexamethyltriethylenetetramine as a catalyst. The subsequent succinylation of the chitosan backbone gave the titled copolymers. The content of POEGMA in CS‐POEGMA could be widely modulated by varying the degree of bromination and feed ratio of OEGMA to CS‐Br, without compromising the amino density of chitosan backbone. The hierarchical assembly between SC‐POEGMA and trimethylated chitosan‐O‐poly(ε‐caprolactone) (TMC‐PCL) micelles was further studied. At pH 7.4, the stoichiometric interactions between SC and TMC segments to form polyampholyte–polyelectrolyte complexes led to the formation of PEG‐shielded micelles. The hierarchially assembled micelles could be disassembled into the pristine TMC‐PCL micelles, when the medium pH was below a certain pH (pHφ). By varying the degree of succinylation of SC‐POEGMA, the pHφ value could be facilely modulated from 6.5 to 3.5 to meet the needs for specific biomedical applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011
Keywords:chitosan  disassembly  micelles  pH‐sensitive  single electron transfer‐living radical polymerization (SET‐LRP)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号