首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective intercalation of charge neutral intercalators into GG and CG steps: implication of HOMO-LUMO interaction for sequence-selective drug intercalation into DNA
Authors:Nakatani K  Matsuno T  Adachi K  Hagihara S  Saito I
Institution:Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, CREST, Japan Science and Technology Corporation (JST), Kyoto 606-8501, Japan.
Abstract:We have synthesized naphthopyranone epoxide 4 from D-isoascorbic acid together with its three diastereoisomers. DNA alkylation of ODNs containing 5'XGT3' and 5'TGY3' by 4 (11R, 13R), where X and Y are any nucleotide bases, occurred at all G residues except at G of the 5'TGC3' sequence. In contrast, the three other diastereoisomers of 4 showed only weak G alkylation activity. Differential (1)H NMR NOE of the 4-G adduct confirmed the G-N7 alkylation at the epoxide carbon of 4 with concomitant S(N)2 ring opening of the epoxide. Quantitative HPLC analysis of G alkylation efficiency for 4 showed the order of G alkylation susceptibility as TGGT approximately CGT > TGA > AGT > TGT > TGC. The order was fully consistent with those reported for aflatoxin B(1) oxide and kapurimycin A(3), suggesting that the sequence selectivity observed for these DNA alkylating agents is not structure dependent but most likely due to the intrinsic property of DNA sequences. We found that the order of G alkylation susceptibility obtained for 4 completely matched the calculated HOMO energy level of G-containing sequences. These results underscore that 4 is a unique molecular probe for ranking the HOMO level of G-containing sequences by well-known G alkylation chemistry and suggests that the intercalation of charge neutral intercalators is a HOMO-controlled process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号