首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid Surface Mesh Adaptation for Climate Modeling
Authors:Ahmed Khamayseh  Valmor de Almeida  Glen Hansen
Affiliation:1. Computer Science and Mathematics Division, Oak Ridge National Laboratory,Oak Ridge, TN 37831, USA
2. Multiphysics Methods Group, Idaho National Laboratory, Idaho Falls, ID 83415-3840, USA
Abstract:Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications,such as climate modeling.Typically,spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest.A sec- ond,less-popular method of spatial adaptivity is called"mesh motion"(r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales.This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function,the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro- duced by element subdivision alone.Further,in an attempt to support the requirements of a very general class of climate simulation applications,the proposed method is de- signed to accommodate unstructured,polygonal mesh topologies in addition to the most popular mesh types.
Keywords:surface mesh generation  mesh adaptation  mesh optimization  climate modeling.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号