首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear stability theory of channel flow with heat transfer – an asymptotic approach
Authors:X You  H Herwig
Institution:(1) Technische Thermodynamik, TU Chemnitz, D-09107, Chemnitz, Germany, DE
Abstract:A fully developed laminar Poiseuille flow subject to constant heat flux across the wall is analysed with respect to its stability behavior by applying a weakly nonlinear stability theory. It is based on an expansion of the disturbance control equations with respect to a perturbation parameter ε. This parameter is the small initial amplitude of the fundamental wave. This fundamental wave which is the solution of the linear (Orr-Sommerfeld) first order equation triggers all higher order effects with respect to ε. Heat transfer is accounted for asymptotically through an expansion with respect to a small heat transfer parameter ε T . Both perturbation parameters, ε and ε T , are linked by the assumption ε T =O2) by which a certain distinguished limit is assumed. The results for a fluid with temperature dependent viscosity show that heat transfer effects in the nonlinear range continue to act in the same way as in the initial linear range. Received on 11 August 1997
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号