首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer:fullerene solar cells
Authors:Faist Mark A  Kirchartz Thomas  Gong Wei  Ashraf Raja Shahid  McCulloch Iain  de Mello John C  Ekins-Daukes Nicholas J  Bradley Donal D C  Nelson Jenny
Institution:Department of Physics and Centre of Plastic Electronics, Imperial College London, South Kensington SW7 2AZ, United Kingdom.
Abstract:We study the appearance and energy of the charge transfer (CT) state using measurements of electroluminescence (EL) and photoluminescence (PL) in blend films of high-performance polymers with fullerene acceptors. EL spectroscopy provides a direct probe of the energy of the interfacial states without the need to rely on the LUMO and HOMO energies as estimated in pristine materials. For each polymer, we use different fullerenes with varying LUMO levels as electron acceptors, in order to vary the energy of the CT state relative to the blend with 6,6]-phenyl C61-butyric acid methyl ester (PCBM). As the energy of the CT state emission approaches the absorption onset of the blend component with the smaller optical bandgap, E(opt,min) ≡ min{E(opt,donor); E(opt,acceptor)}, we observe a transition in the EL spectrum from CT emission to singlet emission from the component with the smaller bandgap. The appearance of component singlet emission coincides with reduced photocurrent and fill factor. We conclude that the open circuit voltage V(OC) is limited by the smaller bandgap of the two blend components. From the losses of the studied materials, we derive an empirical limit for the open circuit voltage: V(OC) ? E(opt,min)/e - (0.66 ± 0.08)eV.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号