首页 | 本学科首页   官方微博 | 高级检索  
     


Photoinduced one-electron reduction of alkyl halides by dirhodium(II,II) tetraformamidinates and a related complex with visible light
Authors:Lutterman Daniel A  Degtyareva Natalya N  Johnston Dean H  Gallucci Judith C  Eglin Judith L  Turro Claudia
Affiliation:Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA.
Abstract:Various substituted dirhodium tetraformamidinate complexes, Rh(2)(R-form)(4) (R = p-CF(3), p-Cl, p-OCH(3), m-OCH(3); form = N,N'-diphenylformamidinate), and the new complex Rh(2)(tpgu)(4) (tpgu = 1,2,3-triphenylguanidinate) have been investigated as potential agents for the photoremediation of saturated halogenated aliphatic compounds, RX (R = alkyl group). The synthesis and characterization of the complexes is reported, and the crystal structure of Rh(2)(tpgu)(4) is presented. The lowest energy transition of the complexes is observed at approximately 870 nm and the complexes react with alkyl chlorides and alkyl bromides under low energy irradiation (lambda(irr) > or = 795 nm), but not when kept in the dark. The metal-containing product of the photochemical reaction with RX (X = Cl, Br) is the corresponding mixed-valent Rh(2)(II,III)X (X = Cl, Br) complex, and the crystal structure of Rh(2)(p-OCH(3)-form)(4)Cl generated photochemically from the reaction of the corresponding Rh(2)(II,II) complex in CHCl(3) is presented. In addition, the product resulting from the dimerization of the alkyl fragment, R(2), is also formed during the reaction of each dirhodium complex with RX. A comparison of the dependence of the relative reaction rates on the reduction potentials of the alkyl halides and their C-X bond dissociation energies are consistent with an outer-sphere mechanism. In addition, the relative reaction rates of the metal complexes with CCl(4) decrease with the oxidation potential of the dirhodium compounds. The mechanism of the observed reactivity is discussed and compared to related systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号