首页 | 本学科首页   官方微博 | 高级检索  
     


Selective conversion of plasma glucose into CO2 by Saccharomyces cerevisiae for the measurement of 13C abundance by isotope ratio mass spectrometry: proof of principle
Authors:Rembacz Krzysztof P  Faber Klaas Nico  Stellaard Frans
Affiliation:Department of Gastroenterology & Hepatology, Center for Liver, Gastrointestinal & Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands.
Abstract:To study carbohydrate digestion and glucose absorption, time-dependent (13)C enrichment in plasma glucose is measured after oral administration of naturally occurring (13)C-enriched carbohydrates. The isotope enrichment of the administered carbohydrate is low (APE <0.1%) and plasma (13)C glucose measurements are routinely determined with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) or liquid chromatography/combustion/isotope ratio mass spectrometry (LC/C/IRMS). In this study, plasma glucose was converted into CO(2) by an in-tube reaction with yeast permitting direct measurement of (13)CO(2) in the headspace. Saccharomyces cerevisiae incubated under anaerobic conditions was able to convert sufficient glucose into CO(2) to produce a consistent CO(2) peak in IRMS with little variation in peak area and precise delta(13)C(PDB) values for corn glucose: -11.40 +/- 0.16 per thousand, potato glucose: -25.17 +/- 0.13 per thousand, and plasma glucose: -26.29 +/- 0.05 per thousand. The measurement showed high linearity (R(2) = 0.999) and selectivity and was not affected by the glucose concentration in the tested range of 5-15 mM. Comparison with GC/C/IRMS showed a good correlation of enrichment data: R(2) > 0.98 for both sources of glucose and plasma samples. Commercially available, instant dried baker's yeast was qualitatively and quantitatively comparable with freshly prepared yeast: R(2) > 0.96, slope 1.03 and 1.08 for glucose solutions and plasma, respectively. Thus, yeast conversion of plasma glucose into CO(2) and (13)C measurement applying a breath (13)CO(2) analyzer is an inexpensive, simple and equally accurate alternative to the more expensive and laborious GC/C/IRMS and LC/C/IRMS measurements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号