首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalytic systems Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) (MTi,XCH3, MZr,XiBu) in copolymerization of ethylene with styrene
Authors:T A Sukhova  A N Panin  O N Babkina  N M Bravaya
Abstract:Catalytic activity of Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) M?Ti, X?CH3 (1); M?Zr, X=iBu (2)] systems in the ethylene/styrene (E/S) feed was examined. Experimental data revealed high activity for the catalytic system (1) for copolymerization ethylene with styrene, whereas the system with enhanced catalytic activity for ethylene homopolymerization (2) was temporarily blocked in the styrene presence yielding, even at high styrene content, homopolyethylene as the final product. Properties of thus obtained polymers were analyzed. Catalytic system (1) occurred very sensitive to S/E ratio in the comonomers feed. The 10‐fold acceleration for ethylene consumption was shown in two experimental sets conducted at S/E = 1.3 ratio, 1 bar, and 7.5 bar ethylene pressure, respectively. The consequent enhancement in S/E ratio resulted in slowing down both ethylene consumption and catalyst deactivation rates. Atactic polystyrene was formed at high styrene content with the catalyst (1). Catalytic system (1) allowed design of products with the highest styrene content (20 mol %) at low ethylene pressure, moderate temperature, and high S/E ratio. The apparent activation energy estimated from the initial rates of ethylene consumption was 54.6 kJ/mol. Analysis of apparent reactivity factors (rE = 9 and rS = 0.04; rE × rS = 0.4) and 13C‐NMR copolymer spectra revealed an alternating tendency of the comonomers for active center incorporation. DSC measurements showed considerable decrease of melting points and crystallinity even for copolymers with low styrene content. The catalyst produced relatively high–molecular weight copolymers (140–150 kg/mol) even at 80°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1083–1093, 1999
Keywords:ethylene  styrene  olefin polymerization  copolymerization  mono‐Cp‐amido complexes  homogeneous catalysis  metallocene‐catalyzed reactions  coordination  polymerization kinetics  NMR  copolymer structure  polyethylene  polystyrene  ethylene–  styrene copolymers  titanium  zirconium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号