首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental evidence and theoretical analysis of physical aging in thin and thick amorphous glassy polymer films
Authors:Kokou D Dorkenoo  Peter H Pfromm
Abstract:Through time‐dependent gas transport properties, we have investigated the physical aging process of amorphous glassy polymer films made from a polynorbornene. By combining the concepts of free volume and the kinetic theory of glass stabilization, it was found that the time dependence of the gas permeability could be rationalized through the thickness dependence of the glass transition temperature. A mathematical relationship was developed that directly relates polymer physical aging (tracked by the gas permeability decay) and sample thickness. It was confirmed by permeation measurements with nitrogen and helium that the aging process is accelerated for thin glassy polymer films (about 8000 Å). The theoretical results show that accelerated aging for thin films compared to thick films can be qualitatively predicted, based on the decrease in the glass transition temperature when the film thickness decreases. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2239–2251, 1999
Keywords:glassy polymers  aging  permeability  model  thin films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号