首页 | 本学科首页   官方微博 | 高级检索  
     


Full-scale two-phase flow measurements on Athena research vessel
Authors:James P. Johansen  Alejandro M. CastroPablo M. Carrica
Affiliation:IIHR – Hydroscience and Engineering, C. Maxwell Stanley Hydraulics Laboratory, The University of Iowa, Iowa City, IA 52242-1585, United States
Abstract:Measurements of gas volume fraction, bubble velocity, chord length and bubble size distributions were performed on the research vessel Athena II operating in Saint Andrew Bay in the gulf coast near Panama City, FL. Double tipped sapphire optical local phase-detection probes were used to acquire indicator functions downstream of the breaking bow wave, behind the masker and at the stern. These indicator functions were also taken at different depths, operating speeds and headings respect to the waves. The data processing includes the computation of velocity of individual bubbles and chord lengths, resulting in chord length distributions. These chord length distributions are used to obtain bubble size distributions using a novel procedure described in detail herein. Uncertainty analysis is performed for gas volume fraction, average bubble velocity and chord length. The results indicate that air entrainment increases with ship speed and sailing against the waves at all positions. The bow wave exhibits unsteady breaking that creates bubble clouds, which were characterized and identified by signal processing. At the stern a very strong dependence of bubble size with depth was found, with evidence that small bubbles (smaller than 500 μm) are transported through the bottom of the hull and reach the transom. The roller present at the transom, the associated strong unsteadiness and bubble entrainment are well captured, as indicated by the stern results, showing the frothy nature of the upper layer.
Keywords:Optical phase-detection probes   Bubble size distribution   Bubble velocity   Ship two-phase flow   Bubble size unfolding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号