首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of solvent composition on the kinetics of cyclooctene epoxidation by hydrogen peroxide catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl
Authors:Stephenson Ned A  Bell Alexis T
Affiliation:Chemical Sciences Division, Lawrence Berkeley Laboratory and Department of Chemical Engineering, University of California, Berkeley, California 94720-1462, USA.
Abstract:The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selectivity of hydrogen peroxide utilization to form cyclooctene epoxide. The catalytically active species are formed only in alcohol-containing solvents as a consequence of (F(20)TPP)FeCl dissociation into [(F20TPP)Fe(ROH)]+ cations and Cl- anions. The observed reaction kinetics are analyzed in terms of a proposed mechanism for the epoxidation of the olefin and the decomposition of H2O2. The first step in this scheme is the reversible coordination of H2O2 to [(F20TPP)Fe(ROH)]+. The O-O bond of the coordinated H2O2 then undergoes either homolytic or heterolytic cleavage. The rate of homolytic cleavage is found to be independent of alcohol composition, whereas the rate of heterolytic cleavage increases with alcohol acidity. Heterolytic cleavage is envisioned to form iron(IV) pi-radical cations, whereas homolytic cleavage forms iron(IV) hydroxo cations. The iron(IV) radical cations are active for olefin epoxidation, whereas the iron(IV) cations catalyze the decomposition of H2O2. Reaction of iron(IV) pi-radical cations with H2O2 to form iron(IV) hydroxo cations is also included in the mechanism, a process that is favored by alcohols with a high charge density on the O atoms. The proposed mechanism describes successfully the effects of H2O2, cyclooctene, and porphyrin concentrations, as well as the effects of alcohol concentration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号