首页 | 本学科首页   官方微博 | 高级检索  
     

SO42-掺杂对Nasicon型Li3Fe2(PO4)3正极材料电化学性能的影响
引用本文:张勃,何珺,华正伸,王新,彭会芬. SO42-掺杂对Nasicon型Li3Fe2(PO4)3正极材料电化学性能的影响[J]. 高等学校化学学报, 2017, 38(1): 108. DOI: 10.7503/cjcu20160452
作者姓名:张勃  何珺  华正伸  王新  彭会芬
作者单位:1. 河北工业大学材料科学与工程学院, 天津 3001302. 天津市材料层状复合与界面控制技术重点实验室, 天津 300130
基金项目:河北省自然科学基金(批准号: E2016202358)资助.
摘    要:采用溶胶-凝胶法用SO42-部分代替Li3Fe2(PO4)3中的PO43-阴离子制得Li3-xFe2(PO4)3-x(SO4)x(x=00.90)正极材料, 通过X射线衍射、 充放电技术、 循环伏安特性测试及电化学阻抗谱表征了掺杂材料的相组成及电化学性能. 结果表明, SO42-主要以固溶形式存在于Li3Fe2(PO4)3中, 产物中还伴有少量Fe2O3第二相析出. SO42-掺杂使Li3Fe2(PO4)3的放电容量呈抛物线形规律变化, 并在掺杂浓度x=0.60时达到最佳值, 该样品在0.5C倍率下的首次放电容量为111.59 mA·h/g, 比未掺杂的样品提高了18.4%; 60次循环充放电后的容量保持率为96%; 将该样品的放电倍率由0.5C逐渐提高至5C, 再降至0.5C, 并在每个倍率下循环10次, 材料的最终放电容量仍能达到首次放电容量的97%. 导致这些变化的原因是SO42-掺杂使材料的氧化还原性能增强, 电池内阻减小, 极化程度降低及Li+扩散系数增大.

收稿时间:2016-06-23

Effect of SO42- Doping on Electrochemical Properties of the Nasicon Li3Fe2(PO4)3 Cathode†
ZHANG Bo,HE Jun,HUA Zhengshen,WANG Xin,PENG Huifen. Effect of SO42- Doping on Electrochemical Properties of the Nasicon Li3Fe2(PO4)3 Cathode†[J]. Chemical Research In Chinese Universities, 2017, 38(1): 108. DOI: 10.7503/cjcu20160452
Authors:ZHANG Bo  HE Jun  HUA Zhengshen  WANG Xin  PENG Huifen
Affiliation:1. School of Material Science & Engineering, Hebei University of Technology, Tianjin 300130, China;2. Tianjin Key Laboratory of Laminating Fabrication & Interface Control Technology for Advanced Materials, Tianjin 300130, China;
Abstract:Effect of SO42- doping on electrochemical properties of the Li3Fe2(PO4)3 cathode materials was studied. Phase constitutents and electrochemical properties of the Li3-xFe2(PO4)3-x(SO4)x(x=00.90) materials were characterized by XRD, charge-discharge technology, cyclic voltammetry and electrochemical impedance spectrum. The results proved that the added SO42- anions mainly dissolved in the Li3Fe2(PO4)3 compound, concomitant with the secondary phase, Fe2O3. Introduction of the SO42- anions resulted in a parabolic variation of discharging capacity for the Li3Fe2(PO4)3 compound, and that the sample with the SO42- content(x) of 0.60 exhibited the best performance. Its initial discharging capacity was about 111.59 mA·h/g at a rate of 0.5C, and this value was 18. 4% higher than that without any SO42-. After 60 charge-discharge cycles, its capacity retention was around 96% at a rate of 0.5C. Moreover, 97% of the initial capacity was obtained for this material by gradually increasing discharging rates from 0.5C to 5C, and then decreasing back to 0.5C, together with 10 charging-discharging cycles at each rate. Above-mentioned improvement in electrochemical properties for the SO42- substituted samples should result from their enhanced redox ability, decreased internal resistance and polarization, and increased Li+ diffusion coefficients of the batteries.
Keywords:
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号