首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的火灾烟雾识别方法
引用本文:赵建华,方俊,疏学明. 基于神经网络的火灾烟雾识别方法[J]. 光学学报, 2003, 23(9): 086-1089
作者姓名:赵建华  方俊  疏学明
作者单位:中国科学技术大学火灾科学国家重点实验室,合肥,230026;中国科学技术大学火灾科学国家重点实验室,合肥,230026;中国科学技术大学火灾科学国家重点实验室,合肥,230026
基金项目:国家重点基础研究专项经费 (2 0 0 1CB4 0 96 0 0 ),安徽省“十五”科技攻关项目 (0 10 130 4 1)资助课题
摘    要:提出了一种基于神经网络的火灾烟雾识别方法,以波长为670nm、1060nm、1550nm的三束激光的三对消光系数比作为网络的输入,网络的输出为“火灾烟雾”和“非火灾因素”,从典型火灾烟雾和非火灾因素对多波长激光的衰减实验中选取数据,组成26种网络样本模式定义表,经391次仿真训练后,输出误差小于0.0001,并经验证实验表明,本方法对火灾烟雾和非火灾因素能进行有效的识别,是处理烟雾识别等非结构问题的一种行之有效的方法。

关 键 词:信息光学  神经网络  反向传播网络  火灾信号处理  烟雾识别  消光系数比
收稿时间:2002-06-14

An Identification Method of Fire Smoke Based on Neural Network
Zhao Jianhua Fang Jun Shu Xueming. An Identification Method of Fire Smoke Based on Neural Network[J]. Acta Optica Sinica, 2003, 23(9): 086-1089
Authors:Zhao Jianhua Fang Jun Shu Xueming
Abstract:An identification method for fire smoke based on a neural network is discussed. The neural network′s input used three couples of extinction coefficient ratio of three laser beams with wavelengths of 670 nm, 1060 nm and 1550 nm respectively. The network′s output used fire smoke and non fire smoke factors. Experiments of multi wavelength lasers attenuation by typical fire smoke and non fire smoke factors were conducted, resulting in twenty six network sample pattern definition tables acquired from selected data. Three hundred and ninety one times of simulation training resulted in an output error less than 0.0001. The verification experiments prove that this method is effective in distinguishing between fire smoke and non fire smoke factors. This identification method has practical application for solving fire smoke recognition and other similar non structural problems.
Keywords:information optics  neural network  back|propagation network  fire signal processing  smoke identification  extinction coefficient ratio
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号