首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrofluorescence of MEH-PPV and its oligomers: evidence for field-induced fluorescence quenching of single chains
Authors:Smith Timothy M  Hazelton Nathaniel  Peteanu Linda A  Wildeman Jurjen
Institution:Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Abstract:Electrofluorescence (Stark) spectroscopy has been used to measure the trace of the change in polarizability (trDeltaalpha) and the absolute value of the change in dipole moment (|Deltamu|) of the electroluminescent polymer poly2-methoxy,5-(2'-ethyl-hexoxy)-1,4-phenylene vinylene] (MEH-PPV) and several model oligomers in solvent glass matrixes. From electrofluorescence, the measured values of trDeltaalpha increase from 500 +/- 60 A(3) in OPPV-5 to 2000 +/- 200 A(3) in MEH-PPV. The good agreement found between these values and those measured by electroabsorption suggests the electronic properties do not differ strongly between absorption and emission, in contrast to earlier predictions. Evidence of electric-field-induced fluorescence quenching of MEH-PPV in dilute solvent glasses was found. When normalized to the square of the applied electric field, the magnitude of quench is comparable to that reported in the literature for thin films of MEH-PPV. In addition, fluorescence quenching was also observed in the oligomers with a magnitude that increases with increasing chain length. By using the values of trDeltaalpha measured by electrofluorescence, a model is developed to qualitatively explain the chain length dependence to the fluorescence quench observed in the oligomers as a function of exciton delocalization along the oligomer backbone. Various explanations for the origin of this quenching behavior and its chain length dependence are considered.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号